SIGNALMENT:

8-week-old, female mixed breed, domestic pig

HISTORY:

This animal was part of a vaccination study and was challenged by intramuscular administration of $10^{5.75}$ TCID 50 of the virulent Koslov strain of classical swine fever virus (CSFV). After developing fever on day 3 post-infection (p.i.), the animal became depressed, tachypneic, and developed a cough on day 6 p.i. The pig became recumbent on day 11 p.i., and died 2 days later with multiple, variably sized cutaneous hemorrhages.

(AFIP 2742238, http://www.afip.org/vetpath/WSC/wsc00/00wsc22.htm)
LABORATORY RESULTS:

CSFV was re-isolated by tissue culture; CSFV-RNA was detectable by RT-PCR in multiple organs.

AFIP Diagnoses:

1. Lymph node: Hemorrhage, medullary, diffuse, moderate, with erythrophagocytosis and hemosiderosis, mixed breed pig, porcine.
2. Lymph node: Lymphoid depletion, diffuse, moderate, with dendritic cell and lymphoblastic hyperplasia (regeneration).
Lymphknoten
Anti-KSP-Immunfluoreszenz
Osteoblasten
Osteoblasten

Osteoklast

Osteoblasten
Veterinary Record (2002) 151, 122-123

Arrest of metaphyseal ossification in pigs with experimental classical swine fever

J. P. Teifke, D. Driemeier, V. Kaden
CHAPTER VI

Principles and use of virological tests and evaluation of their results

A. Detection of virus antigen

1. Fluorescent antibody test (FAT)

The principle of the test is the detection of viral antigen on thin cryosections of organ material from pigs suspected of being infected with classical swine fever virus. The intracellular antigen is detected by using a FITC conjugated antibody. A positive result should be confirmed by repeating the staining with a specific monoclonal antibody.

Suitable organs are tonsils, kidney, spleen, different lymph nodes and ileum. A smear of bone marrow cells might also be used in case of feral pigs, if these organs are not available or are autolysed. The test can be performed within one day. As organ samples can only be obtained from dead animals its use for screening purposes is limited. Confidence in the test result may be limited by doubtful staining, particularly where considerable experience in performing the test has not been acquired or if the organs tested are autolysed.
Indirekte Immunfluoreszenz
zum Nachweis von KSPV-Antigen am Kryostatschnitt

EMPFOHLENEN TESTANSATZ

A. Anti-KSPV-monoklonaler Antikörper
1. Verdächtige Organproben
2. Organproben eines KSPV-freien Tieres (= negative Kontrollen)
3. KSPV-positive Organproben (= positive Kontrollen)

B. Irrelevanter monoklonaler Antikörper
1. Verdächtige Organproben
2. Organproben eines KSPV-freien Tieres (= negative Kontrollen)
3. KSPV-positive Organproben (= positive Kontrollen)
Indirekte Immunfluoreszenz
zum Nachweis von KSPV-Antigen am Kryostatschnitt

Anti-KSPV mAK “BIO 275” (Charge aCSF02B20, 1:50)

Organ: KSPV-positive Tonsille
Indirekte Immunfluoreszenz
zum Nachweis von KSPV-Antigen am Kryostatschnitt

Organ: KSPV-positive Milz

Anti-KSPV mAK “BIO 275”
Irrelevanter mAK
Indirekte Immunfluoreszenz zum Nachweis von KSPV-Antigen am Kryostatschnitt

KSPV-negative Tonsille

KSPV-negativer Lymphknoten

Antikörper: Anti-KSPV mAK “BIO 275”
Unspezifische Reaktionen mit einem mAK-anti-KSPV-FITC in einer KSPV-Antigen-negativen Milz
Der Fluoreszenzantikörpertest (FAT)
An Kryostatschnitten in der Diagnostik der Klassischen Schweinepest

Erläuterungen und Kommentar zum „Diagnosehandbuch“

Jens Peter Teifke, Jörg Beyer und Volker Kaden